but had an R_f lower than maslinic acid. The reference sample was obtained from Centella asiatica.⁸ (c) Sitosterol- β -D-glucoside (eluted by CHCl₃-MeOH, 23:2), m.p. >300°. Positive Molisch's test. Hydrolysis with acid yielded sitosterol and D-glucose. From Alcohol extract. D-Mannitol, m.p. 166° (derivative: acetate), ellagic acid, m.p. >300° (both obtained by direct fractional crystallization) and gallic acid, m.p. 256-258° (obtained by chromatography).

Acknowledgements—The authors thank Professor T. R. Seshadri for his interest and the Central Council for Research in Indian Medicine and Homoeopathy for financial assistance.

⁸ P. Boiteau, A. Buzas, E. Lederer and J. Polonsky, Bull. Soc. Chim. Biol. 31, 46 (1949).

Phytochemistry, 1973, Vol. 12, p. 216. Pergamon Press. Printed in England.

APOCYNACEAE TRITERPENES OF PARSONSIA STRAMINEA LEAVES

K. Jewers and A. H. Manchanda

Tropical Products Institute, 56-62 Gray's Inn Road, London WC1X 8LU

G. BLUNDEN

School of Pharmacy, Portsmouth Polytechnic, Park Road, Portsmouth PO1 2DZ

and

W. J. GRIFFIN

Department of Pharmacy, University of Queensland, Brisbane, Australia (Received 30 August 1972. Accepted 1 October 1972)

Key Word Index—Parsonsia straminea; Apocynaceae; ursolic acid; lupeol; α-amyrin.

In a recent paper one of us reported¹ the isolation of two triterpenes from the leaves of *Parsonsia straminea*. We now wish to report on the identity of these compounds.

Compound A, a triterpene acid, m.p. 277-279° (M⁺, m/e = 456) showed in its IR spectrum strong absorptions at 3440, 1690 and 1030 cm⁻¹, indicating the presence of hydroxyl and carboxyl groups. The base peak of the MS occurred at m/e 248 which further fragmented to an ion of m/e 203, thus suggesting that the compound was either an ursa-12-en or oleana-12-en-28-carboxylic acid.² An ion at m/e 207 was indicative of the hydroxyl group located at C_3 . The NMR spectrum in deuteropyridine³ indicated that the compound was ursolic acid, and this was supported by the physical constants of the methyl ester and the acetyl derivatives.

The IR and MS of compound B suggested that it was a mixture of pentacyclic triterpene alcohols. Separation of the acetylated material on argentized silica gel afforded lupeol acetate and a-amyrin acetate.

EXPERIMENTAL

Separation of compound B. After acetylation with acetic anhydride and pyridine, the product (50 mg) was subjected to preparative TLC on 10% argentized silica gel, using light petrol.– Et_2O (9:1) as developing solvent. The bands were visualized by spraying with 2,7-dichlorofluoresceine and the compounds eluted with Et_2O . This afforded lupeol acetate (18 mg), m.p. $213-217^\circ$, and α -amyrin acetate (28 mg), m.p. $220-222^\circ$.

¹ W. J. GRIFFIN and J. E. PARKIN, *Planta Med.* 20, 97 (1971).

² H. Budzikiewicz, C. Djerassi and D. H. Williams, Structure Elucidation of Natural Products by Mass. Spectrometry, Vol. 2, p. 122, Holden Day, New York (1964).

³ K. Jewers and A. H. Manchanda, unpublished results.